

LA-UR-21-31065

Approved for public release; distribution is unlimited.

Title: Polymer Equations of State and Shock-Driven Decomposition

Author(s): Coe, Joshua Damon

Intended for: Invited talk at Sandia National Lab, Albuquerque

Issued: 2021-11-12 (rev.1)

Polymer Equations of State and **Shock-Driven Decomposition**

Josh Coe Physics & Chemistry of Materials (T-1) Los Alamos National Laboratory

November 9, 2021

Quick Overview

- LANL started taking greater interest in polymer EOS in late 2000's
 - Possible cause of poor simulation results
 - Historically neglected

- Themes that have emerged from that work
 - Polymers decompose chemically when driven at HE detonation pressures
 - Porosity affects decomposition
 - Decomposition affects flow
 - Implications of ↑ for modeling

Polymer Hugoniots Contain Structure

- Derivative discontinuities at $u_p \sim 3$ km/s $(P \sim 25 \text{ GPa})$
- Middle line segment not at equilibrium
- Volume reduction in P-V
 - Degree of reduction correlates qualitatively with chemical structure

Material name	$P_{\mathbf{threshold}}$ (GPa)	$\Delta V_{ m tr}/V(\%)$
epoxy	23.1	3.9
PMMA	26.2	3.4
PTFE	41.6	1.1
PE (linear)	24.7	0.4
polycarbonate	20.0	11.4
phenolic	23.2	6.7
polysulfone	18.5	12.9
polyurethane	21.7	7.3

Carter & Marsh, LA-13006-MS, LANL (originally prepared in 1977)

Hugoniot Structure: Two Early Views

- Phase transition (LANL, 1977)
 - analogous to graphite → diamond
 - "compression...is two-dimensional in nature" below the transition, "more typical of a three-dimensional solid" above
- Decomposition (LLNL, 1979)
 - "..hydrocarbons at high pressure (≥10 GPa) and high temperature (≥1000 K) dissociate into carbon in the diamond phase and hydrogen in a condensed molecular phase"

Hugoniot Structure: Recovery Experiments

- Experiments on polyethylene and Teflon
- Setup
 - Single-shock, Mach compression
 - Hermetically-sealed capsule
 - Enabled recovery of soot and gases
 - Mass spectrometry, XRD, TEM
- Polyethylene results
 - Polymer recovered at ~20 GPa
 - Gases and soot recovered 28-40 GPa
 - Gases were >80% mol CH₄ and H₂
 - Soot was neither graphite nor diamond
 - ⇒ different material (with different EOS) when shocked above threshold

Tubing

NM
Explosive

Brass
Cylinder

PE

SS Tubing

Plywood Base
Plug

Detonator

Stee1

Detasheet C

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)

Reactant EOS: SESAME Framework

- Purely volumetric, no strength or viscoelasticity
- 3-part decomposition for free energy of each phase

$$F(\rho,T) = \phi(\rho) + F_{\rm ion}(\rho,T) + F_{\rm elec}(\rho,T)$$

- Minimize F as function of mass fractions \rightarrow equilibrium phase boundaries
- With regard to polymers:
 - Cold curve extracted from fit to shock data
 - This assumes Mie-Grüneisen form: $P(\rho, E) = P_{ref}(\rho) + \rho \Gamma(\rho) \left(E E_{ref}(\rho)\right)$
 - Ionic models are generalizations of Debye
 - ullet Polymer thermal response *not* well-described by single Θ
 - Thomas-Fermi-Dirac for electrons
 - Electronic excitations not that important for $\rho_{\rm H}/\rho_0\lesssim 3$
 - Typically one phase + liquid
 - Liquid usually pretty hacky

Products EOS: Thermochemical Modeling

- Decomposition products as mixture of fluids and bulk solids
 - Each constituent has its own free energy model
 - Fluids: spherical, pairwise interaction potential (EXP6) translated to free energy with perturbation theory
 - Solids: SESAME model
 - Mixture rule required (non-unique)
- Assume full thermodynamic (and thus, chemical) equilibrium
 - Adjust concentrations until minimal free energy found and stoichiometry preserved

Leiding, et al., "Reactive Monte Carlo Validation of Thermochemical Equations of State," AIP Conf. Proc. 2272, 030017 (2020)

Products EOS: Heat of Reaction

- The origin of a products Hugoniot lies on a separate EOS surface
- Thermochemical EOS surface determined purely by stoichiometry
- Offset from the reactant surface is not
 - closely related to heat of formation
 - essential for capturing energy absorption or release
- We've done this in two ways:
 - adjust to shock data
 - calculate from heat of combustion

Products EOS: Heat of Reaction

- The origin of a products Hugoniot lies on a separate EOS surface
- Thermochemical EOS surface determined purely by stoichiometry
- Offset from the reactant surface is not
 - closely related to heat of formation
 - essential for capturing energy absorption or release
- We've done this in two ways:
 - adjust to shock data
 - calculate from heat of combustion

Limitations of Thermochemical Modeling

- Standard thermochemical tables are $T \sim 100's 10000$ K, $P \sim 0.01 150$ GPa
- · Limitations we understand:
 - predefined constituent catalog
 - potential form (mostly a problem for H₂)
 - equilibrium assumption
- · Stuff we're less sure about:
 - $-\mathcal{G} < 0$ at high pressures
 - $\Gamma < 0$ at high and low T

PMMA: Shock

- Dashed segments indicated metastability (reactant) or physical impossibility (products)
- $E_{\rm shift}$ from heat of combustion indistinguishable from optimized value

PMMA: Reshock and Release

- SNL and Russian reshock/release experiments from common origin
 - SNL: $P \approx 45$ GPa - Russian: $P \approx 41$ GPa

PMMA: Sounds Speeds at Pressure

- t_3 is the observable, indicated by end of flat-top
- Metric is $\delta t_3/(t_2-t_1)$
- Errors in C_L of < 5%
 - very similar results in PE

PMMA: Product Compositions

- Thermochemical products dominated by solid carbon and water
- Dominant change along the Hugoniot: $C + H_2O \rightarrow CO + H_2$
- Thermochemical can't see reactant (no time), QMD can't see phase segregation (system size and timescale limitations)
- Oversimplified vs. uncertain relation to thermodynamics

Product Temperatures & Reaction Thermicities

- Thermochemical modeling consistently predicts large temperature rises
 - PMMA is only case in which we have actual data
 - Temperatures are most poorly constrained thermochemical quantity
- Reaction at constant pressure is exothermic

Old way of capturing "chemistry"

- Old EOS build structure into cold curve
- structure preserved in all isotherms until "washed out" by thermals

Old way of capturing "chemistry"

- Old EOS build structure into cold curve
- structure preserved in all isotherms until "washed out" by thermals
- produces multiwave structure upon release
- reversible phase transition rather than irreversible chemistry
- When might we care?

Heterogeneous Materials are Horrible People

November 9, 2021 | 16

- Not always clear what you're probing
 - Spot size of our standard PDV is roughly 450 μ m
 - Pore diameters span range $\mathcal{O}(10 \ \mu\text{m}-1 \ \text{mm})$
- $U_{\rm S} \approx u_{\rm p}$, so $\sigma(\rho)$ large
- Shot-to-shot variability > known sources of uncertainty
- We have the same problem with powders

Image courtesy of Brian Patterson (MST-7, LANL), data courtesy of John Lang (M-9, LANL)

Adjustments for Porosity

- · Many polymers of interest to NNSA are porous, some highly
- Model reactant as SESAME + $P-\alpha$ porosity model
 - Only porous parameter is crush pressure, P_c
- Still thermochemical modeling for products
 - Vary E_{shift} as $f(\rho_0)$, if necessary

- Foam products expand relative to compressed reactant
- Reaction threshold drops dramatically as $f(\rho_0)$

- Foam products expand relative to compressed reactant
- Reaction threshold drops dramatically as $f(\rho_0)$

- Foam products expand relative to compressed reactant
- Reaction threshold drops dramatically as $f(\rho_0)$

- Foam products expand relative to compressed reactant
- Reaction threshold drops dramatically as $f(\rho_0)$

SX358 Results

November 9, 2021 | 19

- Patterns consistent with polyurethane
- · Uncertainties again: multislug, multi-PDV

Data courtesy of John Lang (M-9, LANL); Brittany Branch and Chad McCoy (SNL); figure courtesy of Katie Maerzke (XTD-IDA, LANL)

Transition Thresholds

- Roughly exponential drop
- Strong dependence on timescale of experiment

Old Way of Treating Foams

- Initialize at foam density, ramp to solid density Hugoniot
- Some error in density, energy, sound speed

Disentangling Non-Equilibrium Effects (or so we hoped)

- 1 embedded gauge, 5 transmission shots on polyimide
- similar series on polysulfone

Measuring & Simulating Reactive Wave Evolution In Situ

- Embedded electromagnetic gauges
 - Advantage: minimizes measurement perturbation
 - Disadvantage: limited to insulating samples and impactors
- Hydrodynamic simulation requires:
 - Reactant and products EOS
 - Rate model. We used Arrhenius: $\mathcal{R} \equiv \dot{\lambda} = (1 \lambda)^n \nu e^{-T_a/T}$
 - Closure rule. We used pressure-temperature equilibrium.

In Situ Wave Profiles: Energetic Materials

- ZND: inert shock followed by reaction zone to CJ state
- Reaction behind feeds the front, strengthening lead shock
- Reaction pushes unsteady → steady

Menikoff, LA-UR-15-29498; Gustavsen, et al., J. Appl. Phys. 99, 114907 (2006)

In Situ Wave Profiles: Phenylacetylene

- Reaction behind the front weakens lead shock
- Initial (P1) wave decays, second (P2) wave carries to products
- Decay and rise times contain kinetic information

Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012); Sheffield thesis, WSU (1979)

Rate Model Calibration

We used 1/(adiabatic induction time) as a proxy for the rate

$$t_{\rm ad}(T_0) = \frac{T_0^2}{\nu T_a(T_1 - T_0)} e^{(T_a/T_0)}$$

 T_0 = reactant temperature

 $T_1 =$ product temperature

In our case, these are Hugoniot temperatures

R. Menikoff, LA-UR-17-31024 (2017)

Rate Model Calibration

- Because $T_0 = T_0(u_p)$, we'll consider $t_{ad}(u_n)$
- For a given pair of EOS:
 - T_a sets u_n range
 - $-\nu$ shifts laterally

Polyimide Shock Data

- CM reactant and products fits cross
 - Is this partly due to their including reacting points in their reactant fit?

Polyimide: Embedded Gauge Results

- Simulation: 50 μ s (Eulerian) mesh, $Z=830~\mu\text{s}^{-1}$, $T_a=8560~\text{K}$, n=2
 - Lagrangian tracers at gauge locations
- Experimental $u_{\rm p}$ analyzed similar to HE initiation data

Polyimide: Embedded Gauge Results

- Simulation: 50 μ s (Eulerian) mesh, $Z=830~\mu\text{s}^{-1}$, $T_a=8560~\text{K}$, n=2
 - Lagrangian tracers at gauge locations
- Experimental $u_{\rm p}$ analyzed similar to HE initiation data
- Attenuation of $\sim 15\%$ in both $U_{\rm S}$ and $u_{\rm D}$, slightly large in simulation

Polyimide: Embedded Gauge Results

- Simulation: 50 μ s (Eulerian) mesh, $Z=830~\mu\text{s}^{-1}$, $T_a=8560~\text{K}$, n=2
- Lagrangian tracers at gauge locations
- Experimental $u_{\rm p}$ analyzed similar to HE initiation data
- Attenuation of $\sim 15\%$ in both $U_{\rm S}$ and $u_{\rm D}$, slightly large in simulation
- Data and simulations suggest sluggish reaction that doesn't proceed to completion
- let's try a stronger input

Polyimide Shock Data

- CM reactant and products fits cross
 - Is this partly due to their including reacting points in their reactant fit?
- Gauge results:
 - Use input (blue square) to refit reactant (blue curve)
 - Reactant and products no longer cross
 - The cusp state (green square) lies on CM reactant (black line)
 - Does P1 relaxation have a long "tail"?

- Advantage: no restriction to non-conducting impactors
- Disadvantage: interaction with the window perturbs the flow
- The general problem is underdetermined more unknowns than equations
 - Similar configurations: Wackerle (1962), Ahrens (1968), Erskine (1992), McWilliams (2008)
 - General theory: Courant & Friedrichs, Zel'dovich, Forbes

- Ignore wave-wave interaction \implies all about pinpointing t_2
- P2 is "thickened" (Zel'dovich) what are the constraints on t_2 ?
 - $-t_1 < t_2 < t(\max(u_w))$
 - $t_2 t_1$ should decrease monotonically with P_{input}

- Try the old way instead: $t_2 = t_1$ (red points)
 - Consistent with old results
 - 2 of 5 points appear fully reacted
 - So what is causing the structure in those profiles?

1.0

- Simplest reshock analysis: reflect old CM products fit and impedance match into LiF
 - Yields window velocities correct to within a few % (dashed, left panel)
- Reshocking one thickened wave yields...another thickened wave
 - Shift in composition from equilibrium shock to equilibrium reshock

- Simplest reshock analysis: reflect old CM products fit and impedance match into LiF
 - Yields window velocities correct to within a few % (dashed, left panel)
- Reshocking one thickened wave yields...another thickened wave
 - Shift in composition from equilibrium shock to equilibrium reshock

Polysulfone Transmission Experiments

PDV at interface with window

Simulation

- underestimates P1 decay
- exaggerates P1 variation with thickness
- P2 slow when thin, fast when thick

Reactive Wave Profiles: Foams

- Clockwise from upper left: 30%, 50%, 60%, 75% porous
- · One wave observed
- PDV increasingly "bleached" due to high T

Summary

- Polymers decompose under shock loading
 - $-u_p \sim 3$ km/s, $P \sim 25$ GPa at full density
 - This is not a reversible phase transition..
- Details affected strongly by porosity
 - Products expand upon reaction
 - Thresholds drop dramatically
- Polymer decomposition produces non-trivial wave evolution
 - Able to capture some qualitative features with simple rate model
 - Qualitative features of transmission profiles resemble those of metals
 - Unable to cleanly disentangle multiwave structure from interactions with window in transmission geometry

Acknowledgements, etc.

- LANL: Dana Dattelbaum, Tinka Gammel, Rachel Huber, John Lang, Jeff Leiding, Katie Maerzke, Jeff Peterson, Chris Ticknor, Kirill Velizhanin
- SNL: Brittany Branch, Kyle Cochrane, Patricia Kalita, Chad McCoy, Josh Townsend
- \$: Science Campaign 2, ASC PEM
- References
 - polyimide: in preparation, email jcoe@lanl.gov
 - pmma: AIP Conf Proc 2272, 0700027 (2020), and in preparation
 - polysulfone: JAP 127, 105902 (2020)
 - Mie-Grüneisen form: https://arxiv.org/abs/2012.01169 (2020)
 - review: Polymers 11, 493 (2019)
 - polyethylene: JAP 126, 045902 (2019); AIP Conf Proc 1979, 030004 (2018)
 - epoxy: AIP Conf Proc 1979, 090008 (2018)
 - fiber-filled composites: JAP 116, 194308 (2014)
 - polyurethane: *JAP* **115**, 174908 (2014)

Extra Slides

Transmission Profiles in Metals

Rigg, et al., J. Appl. Phys. (2009)

Reactive Wave Profiles: Schematic

- Reaction behind weakens lead shock
- Waves separate rather than converge
- Initial (P1) wave decays, second (P2) wave carries to products
- Decay and rise times contain kinetic information

Dremin, Combust. Explos. Shock Waves (1965); Dattelbaum AIP Conf. Proc. (2018)

Detonation Criterion

In order to produce a self-sustaining wave, a material must have a positive thermicity coefficient, σ :

$$\sigma = \left(\frac{\partial P}{\partial \lambda}\right)_{V,E} = \frac{\Delta V}{V} - \frac{\Gamma}{c^2} \Delta H$$

 $\lambda =$ reaction progress variable

 $\Gamma =$ Grüneisen parameter

$$c^2 = (\partial P/\partial \rho)_{S\lambda} = \text{frozen sound speed}$$

$$\Delta = (\partial/\partial\lambda)_{T,P}$$

- Exothermicity ($\Delta H < 0$) isn't sufficient (or even necessary!) for detonation
 - "The importance of the volume term has often been overlooked..."

Fickett and Davis, Detonation: Theory and Experiment

PMMA: Reactant Thermal

- $C_P \propto T$ at low T, never gets to classical limit
 - We shove glass transitions and decomposition into melt
- Expansion surprisingly good given M-G constraint

PMMA: Reactant Thermal

- $C_P \propto T$ at low T, never gets to classical limit
 - We shove glass transitions and decomposition into melt
- Expansion surprisingly good given M-G constraint

Temperature Usually Increases

- In most cases we find T > 0 upon decomposition
- Foam temperatures very high due to P-V work
- High T observable in "bleached" PDV signal

Dattelbaum and Coe, Polymers (2019)